The surface of Jupiter imaged during a flyby from NASA’s Juno Spacecraft
The Sun rises over Earth in a postcard illustrated by Soviet cosmonaut Alexei Leonov, recalling the 1965 mission when he became the first human to walk in space.
March 20 marks the spring equinox. It’s the first day of astronomical spring in the Northern Hemisphere, and one of two days a year when day and night are just about equal lengths across the globe.
Because Earth is tilted on its axis, there are only two days a year when the sun shines down exactly over the equator, and the day/night line – called the terminator – runs straight from north to south.
In the Northern Hemisphere, the March equinox marks the beginning of spring – meaning that our half of Earth is slowly tilting towards the sun, giving us longer days and more sunlight, and moving us out of winter and into spring and summer.
An equinox is the product of celestial geometry, and there’s another big celestial event coming up later this year: a total solar eclipse.
A solar eclipse happens when the moon blocks our view of the sun. This can only happen at a new moon, the period about once each month when the moon’s orbit positions it between the sun and Earth — but solar eclipses don’t happen every month.
The moon’s orbit around Earth is inclined, so, from Earth’s view, on most months we see the moon passing above or below the sun. A solar eclipse happens only on those new moons where the alignment of all three bodies are in a perfectly straight line.
On Aug. 21, 2017, a total solar eclipse will be visible in the US along a narrow, 70-mile-wide path that runs from Oregon to South Carolina. Throughout the rest of North America – and even in parts of South America, Africa, Europe and Asia – the moon will partially obscure the sun.
Within the path of totality, the moon will completely cover the sun’s overwhelmingly bright face, revealing the relatively faint outer atmosphere, called the corona, for seconds or minutes, depending on location.
It’s essential to observe eye safety during an eclipse. Though it’s safe to look at the eclipse ONLY during the brief seconds of totality, you must use a proper solar filter or indirect viewing method when any part of the sun’s surface is exposed – whether during the partial phases of an eclipse, or just on a regular day.
Learn more about the August eclipse at eclipse2017.nasa.gov.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Whoa, how have I not heard about this before today: the Cassini spacecraft is going to dive through a jet of water erupting from Enceladus, a Saturnian moon.
Discovering life was not on the agenda when Cassini was designed and launched two decades ago. Its instruments can’t capture microbes or detect life, but in a couple of dozen passes through the plumes of Enceladus, it has detected various molecules associated with life: water vapor, carbon dioxide, methane, molecular nitrogen, propane, acetylene, formaldehyde and traces of ammonia.
Wednesday’s dive will be the deepest Cassini will make through the plumes, only 30 miles above the icy surface. Scientists are especially interested in measuring the amount of hydrogen gas in the plume, which would tell them how much energy and heat are being generated by chemical reactions in hydrothermal vents at the bottom of the moon’s ocean.
That’s pretty crazy…it sounds like science fiction. NASA is doing a wonderful job producing great science with the lean budgets they are given.
Sunset On Pluto
via reddit
The planet Uranus. Taken on November 14th 2009 at 3:52 am. Using the 98 in Hooker telescope.
The Sirens of Titan