50 posts
Using the James Webb Space Telescope, University of Copenhagen researchers have become the first to see the formation of three of the earliest galaxies in the universe, more than 13 billion years ago. The sensational discovery contributes important knowledge about the universe and is now published in Science. For the first time in the history of astronomy, researchers at the Niels Bohr Institute have witnessed the birth of three of the universe's absolute earliest galaxies, somewhere between 13.3 and 13.4 billion years ago.
Continue Reading.
Extracting the Soul of a Violin
midjourney / Darius Greene / ghost owl attic
Flaps perform essential jobs. From pumping hearts to revving engines, flaps help fluid flow in one direction. Without them, keeping liquids going in the right direction is challenging to do. Researchers from the University of Washington have discovered a new way to help liquid flow in only one direction -- but without flaps. In a paper published Sept. 24 in the Proceedings of the National Academy of Sciences, they report that a flexible pipe -- with an interior helical structure inspired by shark intestines -- can keep fluid flowing in one direction without the flaps that engines and anatomy rely upon. Human intestines are essentially a hollow tube. But for sharks and rays, their intestines feature a network of spirals surrounding an interior passageway. In a 2021 publication, a different team proposed that this unique structure promoted one-way flow of fluids -- also known as flow asymmetry -- through the digestive tracts of sharks and rays without flaps or other aids to prevent backup. That claim caught the attention of UW postdoctoral researcher Ido Levin, lead author on the new paper.
Read more.
Our Sun is a maelstrom of light and heat, a constant battlefield for plasma and magnetic fields. This recent prominence, captured by Andrea Vanoni and others, bore a striking triangular shape. (Image credit: A. Vanoni; via APOD) Read the full article
Eleven thousand years ago, a star exploded in the constellation Vela, blowing off its outer layers in a spectacular shock wave that remains visible today. Today’s image is a piece of a 1.3-gigapixel composite image of the supernova remnant. (Image credit: CTIO/NOIRLab/DOE/NSF/AURA; via Colossal) Read the full article
A comet’s tail changes from day-to-day depending on how much material the comet is losing and how strong the solar wind it’s facing is. (Image credit: Shengyu Li & Shaining; via APOD) Read the full article
When three massive objects meet in space, they influence each other through gravity in ways that evolve unpredictably. In a word: Chaos. That is the conventional understanding. Now, a researcher from the University of Copenhagen has discovered that such encounters often avoid chaos and instead follow regular patterns, where one of the objects is quickly expelled from the system. This new insight may prove vital for our understanding of gravitational waves and many other aspects of the universe.
Continue Reading.
From a million miles away, NASA captures Moon crossing face of Earth. Credit: NASA/NOAA
Astronomers have discovered the slowest spinning radio wave-blasting neutron star ever seen; it takes almost an hour to complete a full rotation. That may sound rather fast, but these dead stars are known to spin so rapidly that some experience 700 full turns every second. Even the most leisurely of the about 3,000 radio-emitting neutron stars, or "pulsars," discovered so far complete a full rotation in a second or so. This ultra-leisurely neutron star, however, designated ASKAP J1935+2148 and located 16,000 light-years from Earth, is emitting radio light at a rate too slow to even fit with current theories describing the behavior of these dense stellar remnants.
Continue Reading.
A well-studied cosmic object has stunned astronomers. The "failed star" Gliese 229B has been revealed to be two so-called "brown dwarfs" that are closely orbiting each other rather than just one. The revelation means that Gliese 229B is a "first-of-its-kind" tight brown dwarf binary, increasing the hope other such exotic systems dwell in the Milky Way just waiting to be discovered. The finding also solves a long-standing mystery about Gliese 229B, explaining why this brown dwarf appears too dim for its mass. "Gliese 229B was considered the poster-child brown dwarf," team member and California Institute of Technology (Caltech) researcher Jerry W. Xuan said in a statement. "And now we know we were wrong all along about the nature of the object. It's not one but two. We just weren't able to probe separations this close until now."
Continue Reading.
Astronomers have discovered a new planetary oddball beyond the solar system that is as fluffy and light as cotton candy. The extrasolar planet or "exoplanet" named WASP-193 b is around 1.5 times the width of Jupiter but has just over a tenth of the solar system gas giant's mass. This makes it the second-lightest planet in the exoplanet catalog, which contains over 5,400 entries. Only the Neptune-like world, Kepler 51 d, is lighter than WASP-193 b. Located around 1,200 light-years from Earth, WASP-193 b orbits its star at a distance of around 6.3 million miles, which is about 0.07 times the distance between Earth and the sun. That means it completes an orbit of its sun-like star, WASP-193, in just 6.2 Earth days.
Continue Reading.
OKAY THIS ARTICLE IS SO COOL
I'm going to try to explain this in a comprehensible way, because honestly it's wild to wrap your head around even for me, who has a degree in chemistry. But bear with me.
Okay, so. Solids, right? They are rigid enough to hold their shape, but aside from that they are quite variable. Some solids are hard, others are soft, some are brittle or rubbery or malleable. So what determines these qualities? And what creates the rigid structure that makes a solid a solid? Most people would tell you that it depends on the atoms that make up the solid, and the bonds between those atoms. Rubber is flexible because of the polymers it's made of, steel is strong because of the metallic bonds between its atoms. And this applies to all solids. Or so everybody thought.
A paper published in the journal Nature has discovered that biological materials such as wood, fungi, cotton, hair, and anything else that can respond to the humidity in the environment may be composed of a new class of matter dubbed "hydration solids". That's because the rigidity and solidness of the materials doesn't actually come from the atoms and bonds, but from the water molecules hanging out in between.
So basically, try to imagine a hydration solid as a bunch of balloons taped together to form a giant cube, with the actual balloon part representing the atoms and bonds of the material, and the air filling the balloons as the water in the pores of the solid. What makes this "solid" cube shaped? It's not because of the rubber at all, but the air inside. If you took out all the air from inside the balloons, the structure wouldn't be able to hold its shape.
Ozger Sahin, one of the paper's authors, said
"When we take a walk in the woods, we think of the trees and plants around us as typical solids. This research shows that we should really think of those trees and plants as towers of water holding sugars and proteins in place. It's really water's world."
And the great thing about this discovery (and one of the reasons to support its validity) is that thinking about hydration solids this way makes the math so so so much easier. Before this, if you wanted to calculate how water interacts with organic matter, you would need advanced computer simulations. Now, there are simple equations that you can do in your head. Being able to calculate a material's properties using basic physics principles is a really big deal, because so far we have only been able to do that with gasses (PV=nRT anyone?). Expanding that to a group that encompasses 50-90% of the biological world around us is huge.
can you hear the music?
El Ojo ‘The Eye’ Island Location: Buenos Aires, Argentina
First discovered by Argentinian filmmaker Sergio Neuspiller in 2003, El Ojo is an uninhabited circular rotating floating island located within a slightly larger circular lake in the Paraná Delta in the Buenos Aires Province, Argentina. This island is constantly rotating on its own axis due to the flow of the river beneath it. The island was named because of its resemblance to an eye when viewed from above: as the island rotates within its surrounding circular lake, the eye appears to move.
Hey, so--we cooled your boyfriend down to a hundredth of a kelvin above absolute zero. Yeah, it was so cold that all of the chemical reactions in his body ceased. Sorry. We, uh, yeah, we used him as a dielectric material in a tiny qubit. And then we quantum-entangled him with another qubit, just to see if we could. Sorry. Yeah, anyway, we thawed him out after two weeks and apparently he's doing fine now. Didn't really teach us anything about how quantum processes work in biological systems, but it sure was, uh, cool. If you'll pardon the pun.
When a physicist falls in love :)
Richard Feynman's love letter to his deceased wife, 1946.
physics professors are really going through it- every day, I think about my quantum physics professor who once went on a rant about how there's too many types of mustard these days followed by the words "well, at least quantum physics is less complicated than the mustard aisle" followed by one of the most cursed derivations I have ever seen
i find it so unfair that i cant do all the science. like what do you MEAN I can't study bio and chem and biochem and atrophysics and physics and geology and climate science. what do you MEAN i have a limited lifespan and need to get out of school at some point to get a job. i want to collect the science fields like pokemon, this isn't fair
Nichole Ayers was born in San Diego but considers Colorado her home. A major in the U.S. Air Force, Ayers led the first-ever all-woman F-22 formation in combat in 2019. https://go.nasa.gov/3IqAyzw
Make sure to follow us on Tumblr for your regular dose of space!
Jessica Wittner, a lieutenant commander in the U.S. Navy, hails from California. A National Outdoor Leadership School alum, Wittner enjoys riding motorcycles and off-roading. https://go.nasa.gov/49CxwUN
Make sure to follow us on Tumblr for your regular dose of space!
After an academic career at U.C. Riverside and Caltech, Chris Birch became a track cyclist on the U.S. National Team. She was training for the 2020 Olympics when she was chosen as an astronaut candidate. https://go.nasa.gov/49WJKHj
Make sure to follow us on Tumblr for your regular dose of space!
Working in a datacenter in the 70s
A former NASA intern, Deniz Burnham started her career as an engineer on an oil rig in Prudhoe Bay, Alaska, and went on to lead operations on drilling rigs in Canada, Ohio, and Texas. https://go.nasa.gov/3wDpfBo
Make sure to follow us on Tumblr for your regular dose of space!
Engineer Karen Leadlay in a General Dynamics computer lab, 1964.
LaRue Burbank, mathematician and computer, is just one of the many women who were instrumental to NASA missions.
Women have always played a significant role at NASA and its predecessor NACA, although for much of the agency’s history, they received neither the praise nor recognition that their contributions deserved. To celebrate Women’s History Month – and properly highlight some of the little-known women-led accomplishments of NASA’s early history – our archivists gathered the stories of four women whose work was critical to NASA’s success and paved the way for future generations.
LaRue Burbank was a trailblazing mathematician at NASA. Hired in 1954 at Langley Memorial Aeronautical Laboratory (now NASA’s Langley Research Center), she, like many other young women at NACA, the predecessor to NASA, had a bachelor's degree in mathematics. But unlike most, she also had a physics degree. For the next four years, she worked as a "human computer," conducting complex data analyses for engineers using calculators, slide rules, and other instruments. After NASA's founding, she continued this vital work for Project Mercury.
In 1962, she transferred to the newly established Manned Spacecraft Center (now NASA’s Johnson Space Center) in Houston, becoming one of the few female professionals and managers there. Her expertise in electronics engineering led her to develop critical display systems used by flight controllers in Mission Control to monitor spacecraft during missions. Her work on the Apollo missions was vital to achieving President Kennedy's goal of landing a man on the Moon.
Eilene Galloway wasn't a NASA employee, but she played a huge role in its very creation. In 1957, after the Soviet Union launched Sputnik, Senator Richard Russell Jr. called on Galloway, an expert on the Atomic Energy Act, to write a report on the U.S. response to the space race. Initially, legislators aimed to essentially re-write the Atomic Energy Act to handle the U.S. space goals. However, Galloway argued that the existing military framework wouldn't suffice – a new agency was needed to oversee both military and civilian aspects of space exploration. This included not just defense, but also meteorology, communications, and international cooperation.
Her work on the National Aeronautics and Space Act ensured NASA had the power to accomplish all these goals, without limitations from the Department of Defense or restrictions on international agreements. Galloway is even to thank for the name "National Aeronautics and Space Administration", as initially NASA was to be called “National Aeronautics and Space Agency” which was deemed to not carry enough weight and status for the wide-ranging role that NASA was to fill.
A self-described "Star Trek nerd," Barbara Scott's passion for space wasn't steered toward engineering by her guidance counselor. But that didn't stop her! Fueled by her love of math and computer science, she landed at Goddard Spaceflight Center in 1977. One of the first women working on flight software, Barbara's coding skills became instrumental on missions like the International Ultraviolet Explorer (IUE) and the Thermal Canister Experiment on the Space Shuttle's STS-3. For the final decade of her impressive career, Scott managed the flight software for the iconic Hubble Space Telescope, a testament to her dedication to space exploration.
Dr. Claire Parkinson's love of math blossomed into a passion for climate science. Inspired by the Moon landing, and the fight for civil rights, she pursued a graduate degree in climatology. In 1978, her talents landed her at Goddard, where she continued her research on sea ice modeling. But Parkinson's impact goes beyond theory. She began analyzing satellite data, leading to a groundbreaking discovery: a decline in Arctic sea ice coverage between 1973 and 1987. This critical finding caught the attention of Senator Al Gore, highlighting the urgency of climate change.
Parkinson's leadership extended beyond research. As Project Scientist for the Aqua satellite, she championed making its data freely available. This real-time information has benefitted countless projects, from wildfire management to weather forecasting, even aiding in monitoring the COVID-19 pandemic. Parkinson's dedication to understanding sea ice patterns and the impact of climate change continues to be a valuable resource for our planet.
Make sure to follow us on Tumblr for your regular dose of space!
On Monday, April 8, 2024, there’ll be a total solar eclipse – and it’ll be the last one to cross North America for 20 years. Make sure you’re tuned in to our live broadcast for this exciting event: there’ll be views from along the path of totality, special guests, and plenty of science.
Make sure to follow us on Tumblr for your regular dose of space!
Think we're the only planet with life? 350mp quality. Remember to download to your phone and zoom in. Gets even more beautiful. Yes this is a nebula, yes I know there’s no life in a nebula. Of course these are not real photos. Duh!
The 2nd full moon of August 2023 l Rami Ammoun
Full Hunter's Moon © astronycc
Saturn by NASA (2019