The fantastical planets in Star Wars preceded our discovery of real planets outside our solar system…but fiction isn’t too far from the facts. When we send our spacecraft into the solar system and point our telescopes beyond, we often see things that seem taken right out of the Star Wars universe.
Saturn’s moon, Mimas, has become known as the “Death Star” moon because of how its 80-mile wide Herschel crater creates a resemblance to the Imperial battle station, especially when seen in this view from our Cassini spacecraft.
The most recently revealed exoplanet dubbed as Earth’s bigger, older cousin, Kepler-452b, might make a good stand-in for Coruscant — the high tech world seen in several Star Wars films whose surface is encased in a single, globe-spanning city. Kepler-452b belongs to a star system 1.5 billion years older than Earth’s! That would give any technologically adept species more than a billion-year jump ahead of us.
At 3,600 degrees Fahrenheit, CoRoT-7B is a HOT planet. Discovered in 2010 with France’s CoRoT satellite, it’s some 480 light-years away, and has a diameter 70% larger than Earth’s, with nearly five times the mass. Possibly the boiled-down remnant of a Saturn-sized planet, its orbit is so tight that its star looms much larger in its sky than our sun appears to us, keeping its sun-facing surface molten! This scorching planet orbiting close to its star could be a good analog for planet Mustafar from Star Wars.
Luke Skywalker’s home planet, Tatooine, is said to possess a harsh, desert environment, swept by sandstorms as it roasts under the glare of twin suns. Real exoplanets in the thrall of two or more suns are even harsher! Kepler-16b was the Kepler telescope’s first discovery of a planet in a “circumbinary” orbit (a.k.a, circling both stars, as opposed to just one, in a double star system). This planet, however, is likely cold, about the size of Saturn, and gaseous, though partly composed of rock.
Fictional Hoth is a frozen tundra that briefly serves as a base for the hidden Rebel Alliance. It’s also the nickname of real exoplanet OGLE-2005-BLG-390, a cold super-Earth whose surface temperature clocks in at minus 364 degrees Fahrenheit.
Kepler-22b, analog to the Star Wars planet Kamino…which was the birthplace of the army of clone soldiers, is a super-Earth that could be covered in a super ocean. The jury is still out on Kepler-22b’s true nature; at 2.4 times Earth’s radius, it might even be gaseous. But if the ocean world idea turns out to be right, we can envision a physically plausible Kamino-like planet.
Gas giants of all stripes populate the real exoplanet universe; in Star Wars, a gas giant called Bespin is home to a “Cloud City” actively involved in atmospheric mining. Mining the atmospheres of giant gas planets is a staple of science fiction. We too have examined the question, and found that gases such as helium-3 and hydrogen could theoretically be extracted from the atmospheres of Uranus and Neptune.
Endor, the forested realm of the Ewoks, orbits a gas giant. Exomoon detection is still in its infancy for scientists on Earth. However, a possible exomoon (a moon circling a distant planet) was observed in 2014 via microlensing. It will remain unconfirmed, however, since each microlensing event can be seen only once.
Discover more about exoplanets here: https://exoplanets.jpl.nasa.gov/
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Neptune
Time lapse of Voyager 1′s approach to Jupiter
Earth isn’t the only planet in the solar system with spectacular light shows. Both Jupiter and Saturn have magnetic fields much stronger than Earth’s. Auroras also have been observed on the surfaces of Venus, Mars and even on moons (e.g. Io, Europa, and Ganymede). The auroras on Saturn are created when solar wind particles are channeled into the planet’s magnetic field toward its poles, where they interact with electrically charged gas (plasma) in the upper atmosphere and emit light. Aurora features on Saturn can also be caused by electromagnetic waves generated when its moons move through the plasma that fills the planet’s magnetosphere. The main source is the small moon Enceladus, which ejects water vapor from the geysers on its south pole, a portion of which is ionized. The interaction between Saturn’s magnetosphere and the solar wind generates bright oval aurorae around the planet’s poles observed in visible, infrared and ultraviolet light. The aurorae of Saturn are highly variable. Their location and brightness strongly depends on the solar wind pressure: the aurorae become brighter and move closer to the poles when the solar wind pressure increases.
Credit: ESA/Hubble (M. Kornmesser & L. Calçada)
The planets, moons and Death Stars seen in the original (theatrical) Star Wars trilogy to scale.
Alderaan, famous for being destroying in A New Hope, is the closest in size to the Earth with a diameter of 12,500 km vs Earth’s 12,742 km average diameter.
Hoth is larger, but still the closest in size to Mars, with a diameter of 7,200 km vs Mars’ 6,779 km.
Endor, the smallest of the bodies to appear in the original trilogy, has a diameter of 4,900 km which makes it very slightly larger than our solar system’s smallest planet, Mercury which has a diameter of 4,879 km.
Of the gas giants seen in Star Wars, Bespin is very similar in size to Saturn (116,464 km average diameter) but is still quite a bit smaller than Jupiter (139,822 km), which in turn is much smaller than Yavin Prime, the largest planet to appear in the original trilogy.
http://space-facts.com/planets-moons-star-wars/
In March, Jupiter, it’s moons and moon shadows will all be visible in the sky. Find out when and where to look up:
Jupiter dominates the evening sky this month, rising at sunset and setting at dawn. On March 8, Jupiter reaches what is called “opposition”. Imagine that Jupiter and the sun are at opposite ends of a straight line, with the Earth in between. This brings Jupiter its closest to Earth, so it shines brighter and appears larger in telescopes.
On the nights of March 14 – 15, March 21 – 22 and March 29, two of Jupiter’s moons will cross the planet’s disk.
When the planet is at opposition and the sun shines on Jupiter’s moons, we can see the moon’s shadow crossing the planet. There are actually 11 of these double shadow transits in March!
The next six months will be awesome times for you to image Jupiter when it’s highest in the sky; near midnight now, and a little earlier each night through the late summer.
Even through the smallest telescopes or binoculars, you should be able to see the two prominent belts on each side of Jupiter’s equator made up of the four Galilean moons: Io, Europa Ganymede and Calisto. If you have a good enough view, you may even see Jupiter’s Red Spot!
Our Juno spacecraft will arrive at Jupiter on July 4th of this year and will go into orbit around the giant planet. Right now, the Juno mission science team is actively seeking amateur and professional images of the planet. These images are uploaded to a Juno website, and the public is invited to discuss points of interest in Jupiter’s atmosphere.
Locations will later be voted on and the favorites will be targets for JunoCam, the spacecraft’s imaging camera. Once JunoCam has taken the images, they’ll be posted online. Imaging participants can then process these raw mission images and re-upload them for others to view.
Make sure to follow us on Tumblr for your regular dose of space: http://nasa.tumblr.com
Why…
Just a socially awkward college student with an interest in the celestial bodies in our universe.
279 posts